News

Veröffentlichungen

Jan Gruteser, Jan Roßbach, Fabian Vu, Michael Leuschel. Using Formal Models, Safety Shields and Certified Control to Validate AI-Based Train Systems. FMAS 2024, to appear.


Jan Roßbach, Oliver De Candido, Ahmed Hammam, Michael Leuschel. Evaluating AI-Based Components in Autonomous Railway Systems. In Proceedings KI 2024, LNAI, 14992, Springer, 190-203, 2024. The final authenticated version is available online at https://doi.org/10.1007/978-3-031-70893-0_14


Jan Gruteser, Michael Leuschel. Validation of RailML Using ProB. In Proceedings ICECCS 2024, LNCS, 14784, Springer, 245-256, 2024. The final authenticated version is available online at https://doi.org/10.1007/978-3-031-66456-4_13


Fabian Vu, Jannik Dunkelau, Michael Leuschel. Validation of Reinforcement Learning Agents and Safety Shields with ProB. In Proceedings NFM 2024, LNCS, 14627, Springer, 279-297, 2024. The final authenticated version is available online at https://doi.org/10.1007/978-3-031-60698-4_16


Fabian Vu, Christopher Happe, Michael Leuschel. Generating interactive documents for domain-specific validation of formal models. In International Journal on Software Tools for Technology Transfer, 26, Springer, 147-168, 2024. The final authenticated version is available online at https://doi.org/10.1007/s10009-024-00739-0


Jan Roßbach, Michael Leuschel. Certified Control for Train Sign Classification. In Proceedings FMAS 2023, EPTCS, 395, 69-76, 2023. The final authenticated version is available online at https://doi.org/10.4204/EPTCS.395.5


Jan Gruteser, David Geleßus, Michael Leuschel, Jan Roßbach and Fabian Vu. A Formal Model of Train Control with AI-based Obstacle Detection. Proceedings RSSRail 2023. LNCS. 14198, Springer, 128-145, 2023. The final authenticated version is available online at https://doi.org/10.1007/978-3-031-43366-5_8(HHU)


G. Hemzal, T. Strobel, J. Großmann, M. Leuschel, D. Knoblauch, M. Kucheiko, N. Grube, R. Krajewski: KI-LOK – Ein Verbundprojekt über Prüfverfahren für KI-basierte Komponenten im Eisenbahnbetrieb; Signal + Draht 04/ 2023


Grossmann, J. et al. (2023). Test and Training Data Generation for Object Recognition in the Railway Domain. In: Masci, P., Bernardeschi, C., Graziani, P., Koddenbrock, M., Palmieri, M. (eds) Software Engineering and Formal Methods. SEFM 2022 Collocated Workshops. SEFM 2022. Lecture Notes in Computer Science, vol 13765. Springer, Cham. (Fraunhofer FOKUS, ITPower Solutions); Verfügbar unter: https://link.springer.com/chapter/10.1007/978-3-031-26236-4_1


Klemenc, Jona, and Holger Trittenbach. „Selecting Models based on the Risk of Damage Caused by Adversarial Attacks.“ arXiv preprint arXiv:2301.12151 (2023) (neurocat); Verfügbar unter: https://arxiv.org/pdf/2301.12151v1.pdf


Jan Roßbach, Michael Leuschel. Certified Control for Train Sign Classification. In Proceedings FMAS 2023, EPTCS, 395, 69–76, 2023. The final authenticated version is available online at https://doi.org/10.4204/EPTCS.395.5


Fabian Vu, Christopher Happe, Michael Leuschel. Generating Domain-Specific Interactive Validation Documents, FMICS 2022, LNCS, 13487, Springer, 32-49, 2022. The final authenticated version is available online at https://doi.org/10.1007/978-3-031-15008-1_4


G. Hemzal, T. Strobel, J. Großmann, B.-H. Schlingloff, M. Leuschel, S. Sadeghipour, J. Firnkorn: KI-LOK – Ein Verbundprojekt über Prüfverfahren für KI-basierte Komponenten im Eisenbahnbetrieb; Signal + Draht 10/ 2021 


11.08.2022

KI-LOK Projektbericht

Der Bericht informiert über Ziele und Strategien des Projekts KI-LOK für das automatisierte Testen von KI-basierten Wahrnehmungssystemen anhand einer tabellarischen Aufschlüsselung.

Er steht kostenlos zum Download zur Verfügung.