

Objectives and strategies for automated testing of AI-based perception systems in railroad engineering.

Version 1.0 December 2021

Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

Authors: Jürgen Grossmann, Johannes Viehmann, Dorian Knoblauch, Lando Petersen, Sami Kharma (Fraunhofer FOKUS), Hans-Werner Wiesbrock, Nicolas Grube (IT-Power Solutions), Mariele Motta (Neurocat)

This document by the KI-LOK project (IML4E – 20219) is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0).

Content

Сс	ontent .			
0	verview			
1.	L. Introduction			
2.	Test	objectives 6		
	2.1. scope	Safeguarding/testing the performance for variations of the known application 6		
2.2. Safeguarding/testing the performance in case of rare or unknous unknown/unknown unknown)		Safeguarding/testing the performance in case of rare or unknown events (known wn/unknown unknown)		
	2.3.	Safeguarding robustness9		
	2.4.	Testing against known vulnerabilities10		
	2.5.	Safeguarding the quality of the data 11		
	2.6.	Testing for dependence on spurious correlations 12		
	2.7.	Testing for performing at least on human level		
3. Automation objectives				
	3.1.	Automated generation of appropriate input data for identified scenarios		
	3.2.	Automated test selection to determine the most efficient test sets possible 16		
	3.3.	Automated identification of test oracles (ground truth) 16		
4.	Refe	rences		

Overview

Table 1 Decomposition of the higher-level goals as an example
Table 2 Presentation of the derived objectives as an example 5
Table 3 Fraunhofer FOKUS: Identification of relevant objects, object combinations and
environmental conditions
Table 4 Fraunhofer FOKUS: Assignment of relevance and risk criteria to objects, object
combinations and environmental conditions
Table 5 Fraunhofer FOKUS: Identification and development of test metrics and procedures
to test data sets for completeness against the real expected environment
Table 6 Fraunhofer FOKUS: Derivation of abstract test cases for dynamic testing over all
relevant objects, object combinations and environmental conditions
Table 7 Fraunhofer FOKUS: Finding Appropriate Methods to Evaluate a Systems Behavior
Regarding How Much of the Possible Behavior is Covered by a Given Set of Inputs
Table 8 Fraunhofer FOKUS: Development of Methods to Generate Test Data Which Covers a
Higher Amount of the Systems Behavior
Table 9 ITPower Solutions: safeguarding robustness 9
Table 10 ITPower Solutions: Identification of relevant perturbations and adversarial attacks9
Table 11 Neurocat: Testing against known vulnerabilities
Table 12 Neurocat: Assess vulnerability to adversarial attacks through stress tests
Table 13 Neurocat: Assess change in performance under corruptions (distribution shift). 10
Table 14 Neurocat: Assess reliance on spurious correlations through tests on training data.
Table 15 Neurocat: Verify Robustness through formal verification methods
Table 16 ITPower Solutions: Safeguarding the quality of the data
Table 17 ITPower Solutions: Evaluation of statistical quality characteristics 11
Table 18 ITPower Solutions: Evaluation of content-related and technical quality features 12
Table 19 ITPower Solutions: Testing for dependence on spurious correlations
Table 20 ITPower Solutions: Correlation analysis 13
Table 21 Fraunhofer FOKUS: Testing for performing at least on human level
Table 22 Fraunhofer FOKUS: Test AI with real-world train camera data as input and real-
world train driver reactions in regular operation as expected output
Table 23 Fraunhofer FOKUS: Test human beings with real-world train camera data in an
explicit test situation
Table 24 Fraunhofer FOKUS: Test human beings and AI with artificial generated test data. 14
Table 25 Fraunhofer FOKUS: Automated generation of appropriate input data for identified
scenarios 15
Table 26 Fraunhofer FOKUS : Simulation-based generation of input data
Table 27 Fraunhofer FOKUS: Generative-based generation of input data
Table 28 Fraunhofer FOKUS: Automated test selection to determine the most efficient test
sets possible
Table 29 Fraunhofer FOKUS: Risk-based selection of tests
Table 30 ITPower Solutions: Automated identification of test oracles (ground truth)
Table 31 ITPower Solutions: Generation of a test oracle by means of metamorphic test
methods

1. Introduction

The following document describes objectives and strategies for automated testing of Albased perception systems. The description is made along a set of higher-level objectives that structure the document into individual chapters. The high-level objectives are shown in Figure 1.

Figure 1 Higher-level objectives

Each high-level objective has a chapter dedicated to it, describing and decomposing it in more detail. The description and decomposition are done along tables. In a first table, each higher-level objective is assigned one or more strategies for achieving the objective. Against the background of the strategy, the higher-level objective is decomposed into further subordinate or derived objectives.

Table 1 Decompositior	n of the	higher-level	goals as	an example
-----------------------	----------	--------------	----------	------------

Objective	Safeguarding for variations of the known application scope
Strategy	 Review of training data and checking whether all objects, relevant object combinations and environmental conditions are sufficiently represented in the data. Dynamic testing on all relevant objects, object combinations and environmental conditions
Derived objectives	 Identification of relevant objects, object combinations and environmental conditions.
	 Assignment of relevance and risk criteria to objects, object combinations and environmental conditions.
	• Identification and development of test metrics and procedures to test data sets for completeness against the real expected environment.
	 Derivation of abstract test cases for dynamic testing over all relevant objects, object combinations and environmental conditions.

For each derived objective, another table is created that defines strategies, methods and tools, expected results, requirements, and constraints for achieving the derived objective. Boundary conditions can be labelled as pre-conditions (Pre:) and post-conditions (Post:).

Table 2 Presentation of the derived objectives as an example

Derived objective	Identification of relevant objects, object combinations and environmental
	conditions.
Strategy	 Systematic identification relevant objects (persons, animals, obstacles) relevant scenes (occluded object, multiple objects nearby, partial view and side/angle view, similar objects at different distances that therefore appear to be different sizes when in fact they belong to the same class, etc.) relevant weather conditions (e.g., environmental changes such as snow-covered rail, faded signal markers, weather conditions such as snow, fog, and rain) relevant lighting variations as a function of time of day Combinations related to invariance requirements such as translational invariance, rotational invariance colour, and size invariance
	 Systematic combination of identified objects, weather conditions, illumination variations.
Method and tools	 Method and tool for systematic modelling of objects and their relationships (ontologies) Combinatorics to derive scenarios with the help of the ontology
Expected results	 Ontology with the description of relevant objects and their relationships. Coverage measures to define completeness.
Requirements to fulfil the objectives	 Development of suitable ontologies and modelling methods for discrete modelling of ODD or sub-problems thereof.
Constraints	 Pre: Definition of an ODD with an initial description of all relevant objects and events

2. Test objectives

2.1. Safeguarding/testing the performance for variations of the known application scope

Ohiostiva	Colonyading Acating the participants for variations of the lunguage and institution
Objective	sareguarding/testing the performance for variations of the known application scope
Strategy	 Review of training data and checking whether all objects, relevant object combinations and environmental conditions are sufficiently represented in the data. Dynamic testing on all relevant objects, object combinations and environmental conditions.
Derived objectives	 Identification of relevant objects, object combinations and environmental conditions. Assignment of relevance and risk criteria to objects, object combinations and environmental conditions. Identification and development of test metrics and procedures to test data sets for completeness against the real expected environment. Derivation of abstract test cases for dynamic testing over all relevant objects, object combinations and environmental conditions.
Project partner	Fraunhofer FOKUS

Table 3 Fraunhofer FOKUS: Identification of relevant objects, object combinations and environmental conditions.

Derived objective	Identification of relevant objects, object combinations and environmental
	conditions.
Strategy	 Systematic identification relevant objects (persons, animals, obstacles) relevant scenes (occluded object, multiple objects nearby, partial view and side/angle view, similar objects at different distances that therefore appear to be different sizes when in fact they belong to the same class, etc.) relevant weather conditions (e.g., environmental changes such as snow-covered rail, faded signal markers, weather conditions such as snow, fog, and rain) relevant lighting variations as a function of time of day Combinations related to invariance requirements such as translational invariance, rotational invariance, colour and size invariance. Systematic combination of identified objects, weather conditions, illumination variations.
Method and tools	 Method and tool for systematic modelling of objects and their relationships (ontologies) Combinatorics to derive scenarios with the help of the ontology
Expected results	 Ontology with the description of relevant objects and their relationships. Coverage measures to define completeness
Requirements to	Development of suitable ontologies and modelling methods for discrete
fulfil the objectives	modelling of ODD or sub-problems thereof.
Constraints	• Pre: Definition of an ODD with an initial description of all relevant objects and events

Table 4 Fraunhofer FOKUS: Assignment of relevance and risk criteria to objects, object combinations and environmental conditions.

Derived objective	Assignment of relevance and risk criteria to objects, object combinations and environmental conditions.		
Strategy	Specification of risk factors for individual objects and factors		
	Specification of risk factors, which are the combination of		
Method and tools	Risk analysis, fault tree analysis, HAZOP		
Expected results	Associated risks to individual objects and factors.		
	 Associated risks to more complex combinations (objects, environmental conditions). 		
Requirements to fulfil the objectives	 Development of a risk analysis procedure to assign risk factors to individual objects with regard to possible classification errors. Development of a risk analysis procedure for evaluating more complex combinations of objects and environmental conditions with regard to possible classification errors. 		
Constraints			

 Table 5 Fraunhofer FOKUS: Identification and development of test metrics and procedures to test data sets for completeness against the real expected environment.

Derived objective	Identification and development of test metrics and procedures to test data sets for completeness against the real expected environment.
Strategy	 Modelling and classification of the real environment along the identified scenarios. Application of statistical methods to measure distribution differences in the data set and in the real environment.
Method and tools	 Development of a method for analysing the distributions of objects in image data against a given environment model.
Expected results	Completeness metrics for data related to identified objects and scenarios
Requirements to fulfil the objectives	 Tools for analysing existing datasets for representativeness against a given model (objects and their distributions).
Constraints	

 Table 6 Fraunhofer FOKUS: Derivation of abstract test cases for dynamic testing over all relevant objects, object combinations and environmental conditions.

Derived objective	Derivation of abstract test cases for dynamic testing over all relevant objects, object
	combinations and environmental conditions.
Strategy	Combinatorial testing
	Risk based testing
Method and tools	• Development and use of tools and procedures for combinatorial and risk-based
	testing of perceptual systems in the railroad domain.
Expected results	• Test cases in the form of parameter sets for systematic testing of the input area.
	Test oracle for the evaluation of the tests
	Coverage measures for defining completeness.
Requirements to	• Development and evaluation of procedures for combinatorial testing that are
fulfil the objectives	suitable for deriving meaningful parameter sets based on the environmental
	information.
	• Provision of procedures for deriving test evaluations (oracles) for the individual
	parameter sets.
	Demonstrate the completeness of the approach with respect to the test
	objective.
Constraints	Post: Provide procedures for generating representatives (images) for testing.

2.2. Safeguarding/testing the performance in case of rare or unknown events (known unknown/unknown)

Objective	Evaluation of the DNN Model regarding its' Behaviour in Cases of Rare Events
Strategy	 Analysis of the systems behaviour when inferring on domain-specific test data (possible natural inputs, train/ test split) Evaluation of this behaviour regarding proportional coverage of the whole systems behaviour Generation of additional test data to cover a higher proportion of the systems behaviour Final statistical evaluation of the systems behaviour regarding the correctness when inferring on domain-specific test data and on the additionally generated test data
Derived Objectives	 Finding appropriate methods to evaluate a systems behaviour regarding how much of the possible behaviour is covered by a given set of inputs Development of methods to generate test data which covers a higher amount of the systems behaviour.

Table 7 Fraunhofer FOKUS: Finding Appropriate Methods to Evaluate a Systems Behavior Regarding How Much of thePossible Behavior is Covered by a Given Set of Inputs

Derived objective	Finding Appropriate Methods to Evaluate a Systems Behaviour Regarding How	
	Much of the Possible Behaviour is Covered by a Given Set of Inputs	
Strategy	Research survey about common evaluation methods and derived metrics	
	• Application of these methods on the concrete use case computer vision systems	
	in locomotive decision systems	
	Analysis of the derived evaluation metrics regarding relevance in the concrete	
	use cases of the system (preceded risk analysis, certain metrics might over-	
	evaluate risks that are not common in our use case)	
	Analysis of the evaluation methods regarding reproducibility and explainability	
Method and tools	Research paper from the automotive domain	
	Open source implementations of common evaluation methods and derived	
	metrics	
Expected results	Comprehensive study of methods and derived metrics in the concrete use case	
	on the properties of relevance, reproducibility and explainability	
Requirements to	 Comprehensive data set (training set and test set) 	
fulfil the objectives	Trained computer vision model in the locomotive domain	
	• Risk analysis of possible events in the concrete use case to evaluate the derived	
	metrics regarding their relevance (preceded risk analysis)	
Constraints		

Table 8 Fraunhofer FOKUS: Development of Methods to Generate Test Data Which Covers a Higher Amount of the Systems

 Behavior

Derived objective	Development of Methods to Generate Test Data Which Covers a Higher Amount of the Systems Behaviour
Strategy	 Research survey about common test generation methods Selection of test generation methods based on relevance in the concrete use cases of the system Application/ implementation of the test generation methods in the application
Method and tools	 Research paper from the automotive domain Open source implementations of common test generation methods

Expected results	• Generation of test data that lead to higher proportional coverage of the systems
	behaviour
Requirements to	Metrics to evaluate a systems behaviour regarding the amount of coverage
fulfil the objectives	exercised with a given set of inputs
	 Comprehensive data set (training set and test set)
	Trained computer vision model in the locomotive domain
Constraints	

2.3. Safeguarding robustness

 Table 9 ITPower Solutions:
 safeguarding robustness

Objective	Safeguarding robustness
Strategy	Dynamic testing of robustness
	Review of training process
	Review of training data
Derived Objective	 Identification of relevant perturbations and adversarial attacks (1,2,3)

Table 10 ITPower Solutions: Identification of relevant perturbations and adversarial attacks

Derived Objective	Identification of relevant perturbations and adversarial attacks
Strategy	 Identification of Events described in section 3.3 Perturbations with reference to the environment (e.g. fog, rain) Perturbations related to the technical environment (e.g. sensor noise, over/under exposure) Adversarial attacks Determination of quantitative measures of perturbations. Determination of quality criteria for the robustness of the test object. Analytical determination of robustness (e.g., were robust features learned?). Determination of the degree of robustness of the test object.
Methods and tools	Risk-Based-Analysis, XAI, generators of perturbations and adversarial attacks.
Expected results	 Data sets with robustness-relevant perturbations. Test cases for robustness testing. Measure (or metrics) for the robustness level of the test object. Method for comparing the robustness level of different implementations of the test object.
Requirements to fulfil the objectives	 Development of methods for the identification of relevant perturbations from environmental influences. Development of methods for the identification of intended perturbations (adversarial attacks). Development and evaluation of methods and procedures for robustness analysis (e.g. XAI for analytical methods). Development of a method for quantitative comparability of the degree of robustness between different test objects.
Constraints	 Pre: criteria for accepting the robustness property. Pre: Definition of the labels to be recognized. Pre: Availability of necessary interfaces between test object and test system.

2.4. Testing against known vulnerabilities

 Table 11 Neurocat:
 Testing against known vulnerabilities

Goal	Testing against known vulnerabilities
Strategy	 Assess adversarial robustness and generalization with respect to distribution shifts
Derived Objectives	 Assess vulnerability to adversarial attacks through stress tests Assess change in performance under corruptions (distribution shift), e.g. rain. Assess reliance on spurious correlations through tests on training data Verify Robustness through formal verification methods

Table 12 Neurocat: Assess vulnerability to adversarial attacks through stress tests

Derived Goal	Assess vulnerability to adversarial attacks through stress tests
Strategy	Test robustness to adversarial attacks through ensemble attacks
Methods and tools	Implementation of various adversarial attacks.
	• Adversarial attacks are defined by optimization strategy and attacker budget (e.g.
	perturbation size given a norm, number of iterations). Ex of attack: FGSM with
	delta L2<0.5 with 10 iterations
Expected results	Systematic evaluation of performance for relevant metrics, attacked classes and
	attack. E.g. table with index=attack, columns= classes, values= classification accuracy
Requirements for	
the	
implementation of	
the goal	
Requirements for	Define set of attacks (attack space is infinite)
the test process/	Define relevant metrics
environment	Define relevant classes

Table 13 Neurocat: Assess change in performance under corruptions (distribution shift).

Derived Goal	Assess change in performance under corruptions (distribution shift).
Strategy	Test robustness to distribution shifts
Methods and tools	 Implementation of various corruptions attacks/distribution shifts. E.g. adding noise, or simulating weather conditions. Corruption attacks with noise can be described by properties of distribution, e.g. Normal distribution with mean=m, variance=v Distribution shifts such as rain have to be described by some metric/parameter – open problem
Expected results	Systematic evaluation of performance for relevant metrics, attacked classes and attack. E.g. table with index=attack, columns= classes, values= classification accuracy
Requirements for the implementation of the goal	
Requirements for the test process/ environment	 Define set of corruption attacks Define set of distribution shifts Define relevant metrics Define relevant classes

 Table 14 Neurocat:
 Assess reliance on spurious correlations through tests on training data.

Derived Goal	Assess reliance on spurious correlations through tests on training data
Strategy	Test if model relies on spurious features for task and whether backdoors were
	introduced during training

Methods and tools• Detect 'Clever Hans' or 'Backdoors' using Explanation methods or inner layer representations. • Detectors run on samples of the training data. • Human supervision is required to adjust detectorsExpected results• Estimation of % of training data with Clever Hans. This can be presented as percentage of minority and majority groups. • Detection of Backdoor attackRequirements for the implementation of the goal• Define set of explanation methods • Define set of detectors • Define set of detectors • Define thresholds for detectors (specific for used model + training data)		
 Detectors run on samples of the training data. Human supervision is required to adjust detectors Expected results Estimation of % of training data with Clever Hans. This can be presented as percentage of minority and majority groups. Detection of Backdoor attack Requirements for the goal Requirements for the test process/ environment Define set of explanation methods Define set of detectors Define thresholds for detectors (specific for used model + training data) 	Methods and tools	• Detect 'Clever Hans' or 'Backdoors' using Explanation methods or inner layer representations.
• Human supervision is required to adjust detectorsExpected results• Estimation of % of training data with Clever Hans. This can be presented as percentage of minority and majority groups. • Detection of Backdoor attackRequirements for the implementation of the goal• Define set of explanation methods • Define set of detectors • Define set of detectors • Define thresholds for detectors (specific for used model + training data)		Detectors run on samples of the training data.
Expected results• Estimation of % of training data with Clever Hans. This can be presented as percentage of minority and majority groups. • Detection of Backdoor attackRequirements for the implementation of the goal• Estimation of explanation methodsRequirements for the test process/ environment• Define set of explanation methods for detectors • Define set of detectors • Define thresholds for detectors (specific for used model + training data)		Human supervision is required to adjust detectors
percentage of minority and majority groups. Detection of Backdoor attack Requirements for the goal Requirements for the test process/ environment • Define set of explanation methods • Define set of detectors • Define thresholds for detectors (specific for used model + training data)	Expected results	• Estimation of % of training data with Clever Hans. This can be presented as
e Detection of Backdoor attack Requirements for the goal - Requirements for the test process/ environment - Define set of explanation methods - Define set of detectors - Define thresholds for detectors (specific for used model + training data)		percentage of minority and majority groups.
Requirements for the implementation of the goal - Requirements for the test process/ environment • Define set of explanation methods • Define set of detectors • Define thresholds for detectors (specific for used model + training data)		Detection of Backdoor attack
the implementation of the goal • Define set of explanation methods Requirements for the test process/ environment • Define set of detectors • Define set of detectors • Define thresholds for detectors (specific for used model + training data)	Requirements for	
implementation of the goal • Define set of explanation methods Requirements for the test process/ environment • Define set of detectors • Define set of detectors • Define thresholds for detectors (specific for used model + training data)	the	
the goalRequirements for the test process/ environment• Define set of explanation methods • Define set of detectors • Define thresholds for detectors (specific for used model + training data)	implementation of	
Requirements for the test process/ environment• Define set of explanation methods• Define set of detectors • Define thresholds for detectors (specific for used model + training data)	the goal	
 the test process/ Define set of detectors Define thresholds for detectors (specific for used model + training data) 	Requirements for	Define set of explanation methods
• Define thresholds for detectors (specific for used model + training data)	the test process/	Define set of detectors
	environment	• Define thresholds for detectors (specific for used model + training data)

 Table 15 Neurocat:
 Verify Robustness through formal verification methods.

Derived Goal	Verify Robustness through formal verification methods
Strategy	Compute certified bounds for chosen architectures.
	Test bounds with adversarial attacks
Methods and tools	 Select verification method(s), e.g. CROWN, FROWN
	Select corresponding adversarial attacks
	Chose number of data points
Expected results	Report with performance metrics
	• Reachability certification (e.g. average interval lenght, average upper reach,
	lower reach, maximal reach)
Requirements for	
the	
implementation of	
the goal	
Requirements for	Relevant architectural choice, understanding/choice of suitable verification
the test process/	method and corresponding adversarial threat
environment	

2.5. Safeguarding the quality of the data

Table 16 ITPower Solutions: Safeguarding the quality of the data

Objective	Safeguarding the quality of the data
Strategy	Review of learning and test data sets
Derived Objective	Evaluation of statistical quality characteristics
	Evaluation of content-related and technical quality features

Table 17 ITPower Solutions: Evaluation of statistical quality characteristics

Derived Objective	Evaluation of statistical quality characteristics
Strategy	 Assessment of the size and representativeness of the data sets of the learning process (training, validation and test data) Description of the data sets using descriptive statistics (e.g., number of objects to be determined such as trees or people and scenarios such as day or night). Generation of measures of extent and representativeness from characteristics determined above.

	 Evaluation of the extent and representativeness on the basis of given acceptance criteria.
	2. Evaluation of completeness of test data sets and consideration of edge
	 Identification of edge cases by means of risk analysis.
	 Description of data sets using descriptive statistics. Evaluation of the completeness and coverage of edge cases on the basis of given acceptance criteria and resulting missing edge cases, if any.
Methods and tools	1. and 2. descriptive statistics, CTE, risk analysis (edge cases).
Expected results	 Procedures to examine data sets for comprehensiveness, completeness, and
	representativeness.
	 Procedures for identifying gaps and underrepresented edge cases.
Requirements to	 Develop methods for qualitatively assessing the extent, completeness, and
fulfil the objectives	representativeness of datasets.
	Develop statistical measures to assess data quality.
Constraints	Pre: delivery of learning process data.
	 Pre: ODD/use cases (narrative specifications).
	• Pre: Acceptance criteria for extent, representativeness, completeness, and
	coverage of edge cases.

Table 18 ITPower Solutions: Evaluation of content-related and technical quality features

Derived Objective	Evaluation of content-related and technical quality features
Strategy	 Evaluation of the correctness and quality of the label of the data. Selection of samples. Checking the correctness and quality of the labels of the data. Derivation of parameters for data quality. Determination of content and technical data quality. Selection of samples. Examination of content (e.g. relevance of the depicted scenarios) and technical (negative example e.g. blurred or noisy images) data quality. Transfer to baseline (data set).
Methods and tools	 and 2. statistics, methods and tools to ensure the correctness of the labels.
Expected results	 Measure (or metrics) of content-related and technical data quality. Process for identifying gaps and underrepresented edge cases.
Requirements to fulfil the objectives	 Development of statistical measures to assess data quality. Development of methods of ensuring the correctness of labels. Development of a method for quantitative evaluation of technical data quality.
Constraints	 Pre: Delivery of the data of the learning process. Pre: ODD/ Use cases (narrative specifications).

2.6. Testing for dependence on spurious correlations

 Table 19 ITPower Solutions:
 Testing for dependence on spurious correlations

Objective	Testing for dependence on spurious correlations
Strategy	Exploratory testing
Derived Objective	Correlation analysis

Table 20 ITPower Solutions: Correlation analysis

Derived Objective	Correlation analysis
Strategy	 Determine pairwise correlation coefficients between features and classifications (e.g., using correlation coefficients, truth matrices, or saliency maps). Evaluation of the correlations. Checking whether acceptance criteria are met.
Methods and tools	Statistical methods, XAI
Expected results	 Method for checking misclassification between features of input data and classification of the output.
Requirements to fulfil the objectives	• Development of methods for testing correlations between input and output data of an ML model.
Constraints	 Pre: Delivery of the ML model to be tested and the input and output data. Pre: Acceptance criteria for correlation measures.

2.7. Testing for performing at least on human level

Table 21 Fraunhofer FOKUS: Testing for performing at least on human level

Objective	Testing for performing at least on human level
Strategy	Compare AI with human train drivers by testing both with the same input data
Derived objectives	 Test AI with real-world train camera data as input and real-world train driver reactions in regular operation as expected output Test human beings with real-world train camera data in an explicit test situation Test human beings and AI with artificial generated test data
Project partner	Fraunhofer FOKUS

Table 22 Fraunhofer FOKUS: Test AI with real-world train camera data as input and real-world train driver reactions in regular operation as expected output

Derived objective	Test AI with real-world train camera data as input and real-world train driver
	reactions in regular operation as expected output
Strategy	Use observation in regular train operation
Method and tools	On train: record front view
	Log train driver reactions
	• Identify critical situations worth testing the AI against with appropriate tool and
	execute these tests against Al
Expected results	Shows how AI performs compared to human beings in certain rea-world
	scenarios, in regular operation (i.e. nothing happens for long times)
Requirements to	Cameras on train in regular operation
fulfil the objectives	Logging system for train driver reactions on train in regular operation
	It must be ensured that it is legal to use data recorded on train in regular
	operation for testing
	• Tool for automated real-world test data selection and test execution needs to be
	developed
Constraints	Requires a lot of observation in regular train operation to get a high coverage of what
	could eventually happen

Table 23 Fraunhofer FOKUS: Test human beings with real-world train camera data in an explicit test situation

Derived objective	Test human beings with real-world train camera data in an explicit test situation
Strategy	Use only selected critical situations form recorded real-world data and test
	human beings with that in an explicit test situation

	• Compare results with reactions of train drivers in the regular operation when the
	video data was recorded
Method and tools	Display recorded real-world data of selected critical situations
Expected results	Get the average latency of human beings under boring regular operation
	conditions in comparison to test situations where a lot happens all the time
Requirements to	• Same as described for "Test AI with real-world train camera data as input and
fulfil the objectives	real-world train driver reactions in regular operation as expected output"
Constraints	

Table 24 Fraunhofer FOKUS: Test human beings and AI with artificial generated test data

Derived objective	Test human beings and AI with artificial generated test data
Strategy	Create test data for rare situations by using simulation
	 Test human beings in explicit testing situation and add average latency for real- world regular operation
	Test Al
	Compare results
Method and tools	3D Simulation, critical scenario catalogues
Expected results	Realistic performance comparison for
Requirements to	• Latency for human beings in real-world regular operation as described in "Test
fulfil the objectives	human beings with real-world train camera data in an explicit test situation"
Constraints	

3. Automation objectives

3.1. Automated generation of appropriate input data for identified scenarios

 Table 25 Fraunhofer FOKUS: Automated generation of appropriate input data for identified scenarios

Objective	Automated generation of appropriate input data for identified scenarios
Strategy	Simulation-based generation of input data
	Generative-based generation of input data
Derived	 identification of base scenarios or inputs with known-ground truth
Objectives	• generative modifications of inputs with know-ground truth (using e.g. metamorphic relations)
	• simulation-based test scenario generation (e.g. by game engines)

Table 26 Fraunhofer FOKUS: Simulation-based generation of input data

Objective	Simulation-based generation of input data
Strategy	 Use scenario descriptions as input to a 3D generator or existing scenarios 3D generator renders the decried scenario with multiple variations and reasonable limits of freedom Replay the generated scene and capture rendered images and corresponding segmentation maps
Method and Tools	 3D Rendering, Segmentation of 3D Renderings Extraction of render-time data from the GPU Analysis of rendering pipeline states of existing simulators to generate segmentation maps for existing scenarios
Expected results	Set of (not necessarily photorealistic) Images with corresponding ground truth
Requirements to fulfil the objectives	 A comprehensive 3D generator for the desired scenarios or an existing 3D environment. Descriptions of scenarios
Constraints	 pre: description of scenarios, existing generator or enviorment post: procedures for generating representatives (images) for testing.

Table 27 Fraunhofer FOKUS: Generative-based generation of input data

Objective	Generative-based generation of input data
Strategy	1. Pre-process input data properly
	2. Design and train a GAN-style architecture
Method and	Machine learning, specifically GAN, WS-GAN, potentially (variational) autoencoders
Tools	
Expected	Variant of a GAN network capable of synthesizing low resolution images which
results	appear to belong to the same dataset as pre-existing input data
	• Method to synthesize such images using the network and ability to retrain the
	network on other similarly structured input data
Requirements	Avoiding (partial) mode-collapse of the GAN network during training
to fulfil the	• Fine tuning hyperparameters and model architecture to ensure the above holds
objectives	• Proper application of classical and non-classical image augmentation approaches to
	fully make use of existing input data
Constraints	pre: presence of a varied and sufficient numbers of input data, presence of
	computational resources sufficient for training variants of GAN networks
	• post: procedures for generating representatives (images) for testing, images likely
	low resolution

3.2. Automated test selection to determine the most efficient test sets possible

Table 28 Fraunhofer FOKUS: Automated test selection to determine the most efficient test sets possible

Objective	Automated test selection to determine the most efficient test sets possible
Strategy	risk-based testing
Derived	identification of relevant risk factors
Objectives	 assignment of risk factors to individual tests or test sets
	risk-based selection of tests

Table 29 Fraunhofer FOKUS: Risk-based selection of tests

Objective	Risk-based selection of tests
Strategy	1. identification of relevant objects and scenarios as parameters for the test
	(ontologies).
	assignment of risk indicators to the objects and scenarios.
	derivation of meaningful test oracles
	selection of tests according to the assigned risk metrics
Method and	Risk analysis and risk-based testing
Tools	
Expected	 ontology with the description of relevant objects and their relationships.
results	 risk assessment of the objects and their relationships.
	• test cases in the form of parameter sets for systematic testing of the input domain.
	• evaluation of tests in terms of their potential to confirm, mitigate or identify new
	risks.
	test oracle for the evaluation of the tests.
	• coverage measures to define completeness, taking into account the risks associated
	with the test.
Requirements	• development of appropriate ontologies and modeling methods for discrete modeling
to fulfil the	of ODD or sub-problems thereof.
objectives	• development and evaluation of risk analysis techniques and procedures suitable to
	differentiate scenarios along the associated risk.
	• development of a procedure for risk-based selection of tests with the goal of:
	 achieve high test coverage for high-risk scenarios.
	 target tests to reduce existing uncertainties (testing scenarios for which the
	probability of a correct system response is unknown).
	 testing based on failure heuristics
	demonstration of the completeness of the approach with respect to the test
	objective.
Constraints	• pre: definition of an ODD with a comprehensible description of all relevant objects
	and events.
	• pre: risk analysis on the objects and events.
	• post: procedures for generating representatives (images) for testing.

3.3. Automated identification of test oracles (ground truth)

 Table 30 ITPower Solutions:
 Automated identification of test oracles (ground truth)

Objective	Automated identification of test oracles (ground truth)
Strategy	Metamorphic test method for ML solutions
Derived Objective	Generation of a test oracle by means of metamorphic test methods

Table 31 ITPower Solutions: Generation of a test oracle by means of metamorphic test methods

Derived Objective	Generation of a test oracle by means of metamorphic test methods
-	

Strategy	2. Qualitative description of logical relations between inputs and outputs of the
	test object.
	 Analysis of input and output patterns.
	 Deduction of metamorphic relations.
	 Automation of the analysis and generation of metamorphic relations (rule
	based or ML based).
	3. Checking the validity of the metamorphic relations in the test case.
Methods and tools	Methods for the generation of metamorphic relations
Expected results	 Method for automated generation of test oracles.
	 Tool for (partially) automated generation of test oracles.
Requirements to	• Development of methods for the generation of metamorphic relations.
fulfil the objectives	• Development of a tool for the (partially) automated generation of test oracles.
Constraints	Pre: Supply of input and output data.

4. References

- [1] Zhang, J. M., Harman, M., Ma, L. & Liu, Y. Machine Learning Testing: Survey, Landscapes and Horizons. arXiv:1906.10742 [cs, stat] (2019).
- [2] Humbatova, N. et al. Taxonomy of real faults in deep learning systems. in Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering 1110–1121 (ACM, 2020). doi:10.1145/3377811.3380395.
- [3] Poddey, A., Brade, T., Stellet, J. E. & Branz, W. On the validation of complex systems operating in open contexts. arXiv:1902.10517 [cs] (2019).